Zakład Fizyki Biomedycznej
Strona główna
Zespół
Badania
Aparatura
Seminaria
Publikacje
Nasze
konferencje
Aktywność
konferencyjna
Projekty
Programy
Najbliższe
wydarzenia
Linki
Kontakt

wizyta

od 2020-09-20


Authors: Stępień A., Knop K., Dolata J., Taube M., Bajczyk M., Barciszewska-Pacak M., Pacak A., Jarmołowski A., Szweykowska-Kulińska Z.

Title: Posttranscriptional coordination of splicing and miRNA biogenesis in plants

Source: WIREs (Wiley Interdisciplinary Reviews: RNA)

Year : 2017


Abstract:

MicroRNAs (miRNAs) are short, single-stranded, noncoding RNAs that play a crucial role in basic physiological and morphological processes and in response to various stresses in eukaryotic organisms. However, the miRNA biogenesis, which is based on the action of complex protein machinery, varies between plants and animals, with the differences largely concerning the location of the process, the protein composition of the microprocessor, the mechanism of miRNA action on mRNA target, and the miRNA gene (MIR) structure. Roughly half of known Arabidopsis MIRs contain introns, and 29 miRNAs are encoded within the introns of host genes. Selection of alternative transcription start sites, alternative splice sites (SSs), and polyadenylation sites has been identified within miRNA primary transcripts (pri-miRNAs), and such variety is essential for the production and fine-tuning of miRNA levels. For example, the posttranscriptional processing of intron-containing pri-miRNAs involves the action of additional RNA metabolism machineries, such as the spliceosome and polyadenylation machinery, and to a large extent is based on direct communication between SERRATE (one of the core components of the plant microprocessor) and U1 snRNP auxiliary proteins. Moreover, the position of the miRNA stem-loop structure relative to the closest active 5′SS is essential for the miRNA production efficiency. Indeed, it is highly probable that this pre-miRNA location affects recruitment of the microprocessor to pri-miRNAs and therefore influences miRNA maturation and target mRNA regulation. Such complicated crosstalk between several machineries is important for a proper miRNA-connected response to biotic and abiotic stresses, ensuring plant survival in a changing environment.

DOI: 10.1002/wrna.1403   (Pobrane:  aktualizowanie)

 © Opisy i zdjęcia: Zakład Fizyki Makromolekularnej  | Ta stona używa ciasteczek
     Zaktualizowano: podstrony  2021-06-21  / bazę danych:   2024-11-02  by Webmaster: Zbigniew Fojud