Abstract:
So far many drug delivery systems for transfer of nucleic acids in gene therapy have been proposed but there is no universal system for transfer of genetic material into cells. The largest problem in the design of new nucleic acids delivery vehicles is finding a carrier which fulfill such criteria as: stability in complexes with nucleic acids, non-toxicity, non-immunogenicity, ability to safe degradation and easy preparation protocol.
A certain group of polycationic surfactants are able to meet these requirements. Their amphiphilic nature, structure flexibility and the ability to bind to siRNA or DNA oligomers are just some of the advantages. Our past research on selected dicationic compounds as DNA or siRNA delivery systems, indicated that an increase in the number of surfactant subunits is a promised direction to develop new efficient carriers of short nucleic acids.
In this work we present results of the studies of the complexes based on selected novel polycationic surfactants (eg. oligomeric imidazolium derivatives) with a model system - double stranded 21-bp siRNA oligomer. By the use of biophysical methods (electrophoresis, circular dichroism, small angle scattering of synchtorton radiation and cryo-transmission electron microscopy) we examined their complexation capacity, nanostructure of lipoplexes, conformational changes in bound siRNA oligomers and micromorphology of complexes. Our studies have shown the formation of stable systems with promising transfection properties. These systems exhibit various morphologies in frozen state.
Acknowledgments: The study was supported by research grant “PRELUDIUM” from National Science Center (Poland) - UMO-2016/23/N/ST4/01637.
|